Data Swarm Clustering
نویسندگان
چکیده
Data clustering is concerned with the division of a set of objects into groups of similar objects. In social insects there are many examples of clustering processes. Brood sorting observed in ant colonies can be considered as clustering according to the developmental state of the larvae. Also nest cleaning by forming piles of corpse or items is another example. These observed sorting and cluster capabilities of ant colonies have already been the inspiration of an ant-based clustering algorithm. Another kind of clustering mechanism can be observed in flocks of birds. In some rainforests mixed-species flocks of birds can be observed. From time to time different species of birds are merging to become a multi-species swarm. The separation of this multi-species swarm into its single species can be considered as a kind of species clustering. This chapter introduces a data clustering algorithm based on species clustering. It combines methods of Particle Swarm Optimization and Flock Algorithms. A given set of data is interpreted as a multi-species swarm which wants to separate into single-species swarms, i.e., clusters. The data to be clustered are assigned to datoids which form a swarm on a twodimensional plane. A datoid can be imagined as a bird carrying a piece of data on its back. While swarming, this swarm divides into sub swarms moving over the plane and consisting of datoids carrying similar data. After swarming, these sub swarms of datoids can be grouped together as clusters.
منابع مشابه
Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملClustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملFuzzy clustering of time series data: A particle swarm optimization approach
With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...
متن کاملA cultural algorithm for data clustering
Clustering is a widespread data analysis and data mining technique in many fields of study such as engineering, medicine, biology and the like. The aim of clustering is to collect data points. In this paper, a Cultural Algorithm (CA) is presented to optimize partition with N objects into K clusters. The CA is one of the effective methods for searching into the problem space in order to find a n...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006